
Drawing on the World: Sketch in Context

Andrew Correa
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA, USA
acorrea@csail.mit.edu

Abstract—In this paper we introduce our approach to im-
plementing context-rich sketch-based interfaces. By “context-
rich” we mean interfaces for systems that refer to real-world
objects. For example, a system that allowed the user to draw
on an annotated video feed instead of a blank canvas would
yield this kind of context-richness. We describe “Drawing on
the World”, the concept that taking what is being drawn on
into consideration results in increased ease of development and
a better user experience in sketch recognition.

We created a description language, called StepStool, and an
engine to interpret StepStool descriptions. StepStool is used to
describe the relationship between context (objects on the canvas)
and drawn shapes to determine the shapes’ meanings. We used
StepStool to implement the context-rich control interface to a
robotic forklift (see [2], [11]). We use that interface in this paper
to describe StepStool’s use.

In our future work, we propose two extensions to StepStool
that could make it more broadly applicable. The first extension
allows StepStool to be used with non-robotic systems. The second
proposed extension allows StepStool to be used with other
modalities—e.g., hand gesture recognition.

Index Terms—Gesture Computing, Human-Machine Interface
Design, Sketch and Gesture Based Design, Sketch Recognition

I. INTRODUCTION

Sketch is everywhere. From an early age we are taught to
communicate ideas to one another using pen and paper and
to interpret drawn diagrams. In the Multimodal Understanding
Group we are interested in simplifying the way people interact
with systems, by giving those systems the ability to understand
human modes of communication, i.e., speech, sketch, and hand
gesture. The work presented here focuses on sketch.

We present work that simplifies the task of creating sketch-
based systems. We do this by separating sketch recognition
into its own module. Within this module we separate the
lower-level sketch recognition from the higher-level domain
specification. We call the low-level task “shape recognition”,
because it recognizes a stroke as one of a set of shapes. We call
the higher-level task “context recognition”, because it involves
comparing the shape to context. The work presented here
focuses on context recognition. We introduce a description
language, called StepStool1, that facilitates describing shape-
to-object relationships.

A. Related Work

Much work has been done on the task of low-level prim-
itive shape recognition. Earlier systems [8], [12] use simple

1StepStool stands for, “A Stroke to Environment, Peripherals, Scene,
Terrain, and Objects Orientation Language”.

corner-detection-based recognizers to determine when a stroke
should be broken into line segments, and classify strokes
accordingly. Paulson and Hammond [6] created a system,
called “PaleoSketch”, that uses heuristics to classify a stroke
as one of eight primitive shapes. We partially reimplemented
PaleoSketch, and used it with our StepStool engine. Our work
treats the shape recognizer as a black box and works with its
output.

Much work has been aimed at developing domain-
independent sketch recognizers. Hammond and Davis’ ap-
proach to this task [4] involved creating a new language to
describe a sketch domain—a lexicon of shapes, shape beau-
tifications, and editing gestures for shapes—and a compiler
for that language. Their system could make low-level shape
recognitions (e.g., lines, circles, and curves). It involved de-
scribing geometric relations between them using a description
language, called LADDER, to define higher-level shapes. Our
language, StepStool, is inspired greatly by this work in both
spirit and name.

Context in sketch recognition has been widely used. Al-
varado et al. [1] incorporated context to distinguish various
hand-drawn shapes from one another in the domain of free
body diagrams. Similarly, Ouyang and Davis [5] present a
machine learning approach to achieving domain independence
in sketch recognition. They do this by incorporating what
they call “local context” in their sketch recognition system.
Local context consists of the area around the strokes being
classified. A major drawback of Ouyang’s approach (common
to all machine learning approaches) is that it requires training
data. We decided to use a description-based approach to avoid
the need for a training step.

Several systems have been developed that adopt a remote-
command-and-control architecture [3], [7], [9], i.e., an archi-
tecture in which a human controls a robot with a sketch-
enabled mobile device. These systems have the ability to detect
objects in the world. We built off the idea that we could
annotate camera images with these detected objects and use
the context of the camera image to control the robot’s actions
in the world. We describe our approach to this command-and-
control architecture in [2].

II. TERMINOLOGY

Before describing our work, we begin by defining the sketch
terminology we use in this paper.

Stroke Shape GestureContext
Analyzer

Shape
Recognizer

Fig. 1. The progression of a stroke through a shape into a gesture. In this
example, a stroke is recognized as a circle, and then classified as a “Pickup”
gesture because it was drawn on an item of cargo.

A. Strokes, Shapes, and Gestures

Fig. 1 shows the relationship between strokes, shapes, and
gestures as we define them in our system. Strokes are a
sequence of timestamped (x, y) coordinates, and shapes are
geometric primitives. Strokes are interpreted to be one of
a fixed set of shapes by a shape recognizer (like Paulson’s
PaleoSketch [6]). Gestures are shapes with meaning. They are
given that meaning based on what the shape was drawn on and
around, i.e., based on context. We call the part of the system
that classifies shapes as gestures the “Context Analyzer”. The
focus of our work is on implementing this context analyzer.

B. Domain Knowledge vs. World Context

Our system assumes some kind of “world” exists. That is,
our system assumes that the user is not only drawing sketches
on a blank canvas, but drawing sketches on a world populated
with objects. This involves making a conceptual switch. Fig. 2
demonstrates this idea. On the left are several strokes. Looked
at alone, their meaning is unclear. When world context is
added, as it is on the right, suddenly some meaning can be
attributed to the strokes.

Fig. 2. Strokes’ meanings may not be apparent without context.

Our system distinguishes between “domain knowledge” and
“world context”. We define “domain knowledge” as “the lex-
icon of shapes we need to recognize”. For example, in circuit
diagrams, the lexicon includes diodes, wires, and resistors. We
define “world context” to mean “what is being drawn on and
around”. For example, in circuit diagrams a resistor’s context
is “between two wires”. Our system uses both world context
and domain knowledge to recognize gestures.

C. The World, the World Model, and the Scene

We distinguish between the “world”, “world model”, and
“scene” in our system. The world is the place that you and
I live in. In robotic systems, we want the system to interact
with the world. The world model is where a system stores
select information about the world. In the case of a robot,

this could be the position and orientation of a soda can it is
trying to pick up. The scene is a StepStool-specific construct
that stores a subset of the information in the world model. It
is separate from the world model to decrease the complexity
of the system. This simplification facilitates writing correct
StepStool descriptions.

D. Grounding Gestures to Referents

Lastly, we define the meaning of “grounding gestures to
referents” in sketch recognition. Referents are defined by their
association to a gesture. Each gesture must reference some
object that the gesture is meant to act on. This object must
exist in the world. For example, without a reference to the soda
can, the system could not understand a “pickup” command.
“Grounding” is the process of making that association.

III. STEPSTOOL

Inspired by LADDER [4], StepStool is a description lan-
guage meant to simplify how context-rich sketch-based sys-
tems are implemented. StepStool allows the programmer to
focus completely on the rules that describe gestures instead
of having to implement shape and context recognizers. Step-
Stool’s purpose is to distill domain knowledge and world
context, thus facilitating the implementation of context-rich
sketch interfaces.

Our main motivation when designing StepStool, was to
create a language that is straightforward and human-readable.
StepStool is straightforward in the sense that small conceptual
changes to the software specification result in small changes to
the StepStool description files. As a result of being straightfor-
ward, shapes can be “overloaded”, or assigned more than one
meaning depending on context. For example, a circle could
either be a command to pick something up, or a command to
put something down. The difference would be what is being
circled—an object, or the ground. Stepstool is human-readable
relative to a programming language.

We implemented a StepStool engine that interprets Step-
Stool descriptions. The following sections go into how the
StepStool engine is intended to be used as a library (§III-A),
describe what the syntax of the language looks like and why
(§III-B), and present an example of the system in use in a
robotic forklift (§III-C & §III-D).

A. Use in a General System

World
Model

Scene

Condition
Module

Gesture
Handler

SS Engine Custom
Application

World
1

2 3

4

Shape
Recognizer

5

6
Strokes

Fig. 3. The control flow of a system using the StepStool interpretation engine.

We implemented a StepStool interpretation engine that
allows an application to use StepStool to implement a sketch-

based interface. Fig. 3 shows a high-level view of how the
engine is meant to fit into a sketch-based system.

1) An object is detected in the world and the world model
is populated with a representation of that object.

2) The user draws a stroke, which is passed to the shape
recognizer.

3) The shape recognizer classifies the stroke as a shape and
passes the shape into the StepStool engine.

4) The scene is populated with relevant 2D data from the
world model.

5) The Stepstool engine’s condition module compares the
shape with the objects in the scene.

6) The StepStool engine returns a gesture classification,
that the system can handle in a system-specific way.

Note that despite not having access to the real world via
sensors as robots do, we anticipate that StepStool could work
well with non-robotic systems. StepStool’s only interaction
with the world is through the world model. The resultant
gesture classification is sent to a system-specific handler. Thus,
the system can use StepStool to classify new strokes based on
the results of previous strokes’ classifications. We describe this
idea further in our future work section.

B. Syntax & Details

〈S〉 ::= 〈object〉 | 〈shape〉 | 〈gesture〉
〈object〉 ::= “object” 〈ident〉 { 〈attrib-list〉 } “end”
〈shape〉 ::= “shape” 〈ident〉 { 〈attrib-list〉 } “end”
〈attrib-list〉 ::= “has” 〈ident〉 { “,” 〈ident〉 }
〈gesture〉 ::= “gesture” 〈ident〉 “shapeof” 〈ident〉 “referent”

(〈ident〉 | “projected”) { “given” 〈ident〉 〈ident〉 }
{ 〈cond〉 } “end”

〈cond〉 ::= (“shape” | 〈full-ident〉) [“not” | “!” | “approx” |
“∼”] 〈cond-kw〉 (〈full-ident〉 | “true” | “false” |
〈num〉)

〈full-ident〉 ::= 〈ident〉 [“.” 〈ident〉 | “[*]” | “[%]”]

Fig. 4. The extended Backus-Naur Form for StepStool descriptions. 〈ident〉
(short for “identifier”) is a placeholder for any string. 〈num〉 denotes a number.
〈cond-kw〉 is a condition keyword from fig. 6. Parenthesis with bars (“(” and
“)” with “|”) denote one of a set of elements must be inserted. Square brackets
(“[” and “]”) denote optional elements. Curly braces (“{” and “}”) denote
optional repetition (i.e., 0 or more).

StepStool defines three kinds of descriptions: shape descrip-
tions, object descriptions, and gesture descriptions. Shape and
object descriptions are lists of geometric attributes2, while a
gesture description lists the conditions that classify a shape
as a gesture. Fig. 4 presents the syntax of all three StepStool
description types in extended Backus-Naur Form.

Fig. 5 shows one example each of an object description,
a shape description, and a gesture description. Object and
shape descriptions are meant to describe the objects found
in the scene and the shapes to be recognized. Object and

2Currently these attributes are all stored as integers.

object Person gesture Follow
 has vx, vy shapeof Circle
end referent person

shape Circle given Person person
 has cx, cy shape on person
 has r shape sizeof person
end end

Fig. 5. Examples of an object, shape, and gesture description. The “Follow”
gesture is a command to follow a circled person. The person and circle
descriptions exist to be referenced in the gesture. The person is the gesture’s
referent. The circle is the gesture’s shape.

shape attributes—denoted by the has directive—are compared
together by the StepStool engine according to the conditions
listed in gesture descriptions. By default, each shape and each
object is given position and size attributes. These attributes are
used to evaluate the conditions listed in fig. 6.

Condition Keywords
inside on sizeof below leftof larger is

Fig. 6. StepStool condition keywords.

A gesture description lists the conditions that classify a
gesture. These conditions are of the form “x [cond] y”,
where [cond] is one of the conditions from fig. 6. For
example, the gesture in fig. 5 has two conditions: “shape
on person” and “shape sizeof person”. “shape
on person” means the shape must be drawn on the person.
“shape sizeof person” means the shape must be the
same size as the person.

The three elements of a gesture description, that are not
in fig. 6 are the shapeof, the referent, and the given
keywords. The shapeof condition limits what kinds of
shapes can be classified as the gesture. The referent
directive assigns a referent to the gesture, i.e., it denotes what
the gesture is meant to be grounded to. This referent must
appear in a given directive. The given directive allows
the description to reference objects. This is useful when the
referent is an object in the scene or when the drawn shape
needs to have a specific geometric relationship to specific
objects in the world.

object Truck object Box end
 has vx, vy
end gesture Path
 shapeof Line
shape Line referent projected
 has x1, y1 shape not on Box [*]
 has h2, y2 shape not on Truck [*]
end end

Fig. 7. Additional examples of object, shape, and gesture descriptions. The
gesture demonstrates the use of the “projected” keyword and the “[*]”
(all) modifier. The “Path” gesture is a command to move. According to the
gesture description, a line will be classified as a Path only if the line is not
drawn on any boxes or trucks.

Some gestures do not act upon an object in the world.

Instead, those gestures have an effect upon the system. For
example, in fig. 7 the Path gesture is a command for the
forklift to follow a path. This gesture does not directly affect
any object. Instead, it affects the system. This interaction
between the Path gesture and the system can be modeled
with projection. The gesture is projected into the world. The
Path gesture’s referent is its projection. Being grounded to
“projected” means that a new referent must be created for
this gesture.

gesture Select gesture AddBody
 shapeof Circle shapeof Circle
 referent body referent projected
 given Body body end
 shape on body
 shape approx larger body
end

Fig. 8. The two gestures here demonstrate the need for an evaluation priority.
When the conditions of the one on the left are satisfied, the conditions for
the one on the right will also be satisfied. To determine which classification
to make, StepStool implements a priority queue of gestures. The programmer
must assign the Select gesture higher priority so that when a body is circled,
it is selected. When no body is circled, the AddBody gesture is classified
and the system will project a circular body.

Fig. 8 shows a situation where a shape could be classified
as more than one gesture, namely a Select gesture or an
AddBody gesture. To break these sorts of ties, the gestures are
stored in a prioritized list. Gestures are evaluated sequentially
by priority. StepStool classifies a shape as the first gesture
found to be valid.

StepStool also has several constants, modifiers, and opera-
tors. Constants include all the numbers, true, false, and
shape. shape is used as a constant to allow a gesture
to compare the drawn shape (the one being classified) to
the objects in the scene. The not (or !) and approx (or
∼) modifiers negate and loosen conditions, respectively. The
statement “shape larger body” evaluates to false if the
shape is the same size as body. The statement “shape
approx larger body”, however, evaluates to true when
the shape is the same size as the body. Thus, we do not
need to implement an “outside” condition; we write “not
inside” instead.

Lastly, there are situations where each or all of a cer-
tain class of object need to be referenced. For example,
the path in fig. 7 cannot intersect any Box or Truck ob-
jects (“shape not on Box[*]” and “shape not on
Truck[*]”). Similarly, when commanding the forklift to
pick up some cargo, the drawn shape must be the same size
as at least one item of cargo (“shape approx sizeof
Cargo[%]”). For this purpose, we included the [*] and [%]
modifiers to mean “ensure all of this type of object satisfy
this condition” and “ensure at least one of this type of object
satisfies this condition”.

C. Implementation: The Forklift Project

We implemented a robotic control interface [2] to an
autonomous forklift [11] using our StepStool interpretation

engine. In this section, we describe a subset of the descriptions
used to implement [2]. With this subset, we demonstrate
StepStool’s intended use in a system, and we specify the
purpose of each description type.

object Forklift object Pallet object Truck
 has vx, vy has pickup has vx, vy
 has loaded has id has pallets
end end end

Fig. 9. These three object descriptions are lists of attributes describing the
objects that appear in the world. In our example there are only forklifts, pallets,
and trucks in the world.

Fig. 9 shows example object descriptions. The Forklift
description is meant to make the state of the robot visible to
the StepStool engine. The Pallet and Truck descriptions
are meant to describe common warehouse objects3. The vx
and vy attributes keep track of velocity, and the loaded,
pickup, and pallets attributes keep track of elements of
the objects’ states; namely whether the forklift is loaded (i.e.,
already carrying a pallet), whether a pallet is already scheduled
for pickup, and how many pallets are on the truck.

shape Dot shape Line shape Circle
end has x1, y1 has x, y, r
 has x2, y2 end
 end

Fig. 10. Each of these three shape descriptions is a representation of what the
shape recognizer recognizes. Note that the Dot description has no attributes,
because position and size attributes are enough to describe it.

Fig. 10 shows example shape descriptions. These descrip-
tions are StepStool’s interface to the shape recognizer. They
describe useful shape attributes. The shape recognizer we
use in this example recognizes only three shapes: a dot (or
“click”)4, a line (or curve—any open region), and a circle (or
polygon—any closed region).

Fig. 11 shows example gesture descriptions. Notice the use
of gesture overloading in these examples. There are contexts
in which a circle denotes a “pick up that pallet” command
and there are contexts in which it denotes “place that pallet
down”. The dot has a similar dual nature. The priority given
to these gestures is left-to-right then top-to-bottom. Thus, if
the forklift is not “loaded” (i.e., not holding any cargo) when
an appropriately-sized circle is drawn and no pallet is found
in the scene, then the PickUpP gesture will be recognized.
If the user draws a circle around a detected pallet, however,
the StepStool engine would recognize the PickUpR gesture.

3Pallets are the smallest unit of transported goods handled by a forklift.
Pallets provide a way to package cargo so that forklifts can manipulate that
cargo—by inserting the forklift’s tines in two slots in the pallet.

4Note that the Dot description has an empty body, because the default
position and size attributes suffice to describe dots. The purpose of adding
this “empty” description is to distinguish it from other shapes.

gesture DropOffR gesture PickUpR
 shapeof Dot, Circle shapeof Dot, Circle
 referent pal referent pal

 given Pallet pal given Pallet pal
 given Forklift fork given Forklift fork

 shape on pal shape on pal
 fork.loaded is true fork.loaded is false
end end

gesture DropOffP gesture PickUpP
 shapeof Circle shapeof Circle
 referent projected referent projected
 given Forklift fork given Forklift fork

 shape ~sizeof Pallet [%] shape ~sizeof Pallet [%]
 fork.loaded is true fork.loaded is false
end end

 gesture Path
 shapeof Line
 referent projected
 shape not on Forklift [*]
 shape not on Truck [*]
 shape not on Pallet [*]
 end

Fig. 11. These gesture descriptions specify the conditions under which a
shape is to be classified as a gesture. They are sorted by priority: left-to-right
then top-to-bottom. When multiple gestures describe the scene accurately, the
highest priority gesture triggers a classification. The remaining gestures are
not evaluated.

D. Forklift Project Run-Through

This section follows the process the StepStool engine takes
when interpreting a gesture. For this example, we will assume
the descriptions from fig. 9, fig. 10, and fig. 11 have been
loaded into the system in order.

stroke shape
gesture

WM scene
input

sen
sin

g

tablet

classif.

StepStool

import

Fig. 12. The process of recognizing a pickup gesture. The top path shows the
steps through the forklift’s object detection system. The bottom path shows
the steps through the interface’s recognition system. At the far right, we see
that a pickup gesture was recognized.

The process starts with the user drawing a stroke (shown
in red in fig. 12) on top of a pallet. The shape recognizer
recognizes it as a circle (shown in green along the bottom
path in fig. 12) and passes the shape to StepStool. The
forklift’s sensors have already detected the pallet and made
some representation of it in the world model. When StepStool
sees that a stroke has been drawn, it imports all the objects
displayed on the canvas into the scene. Note, that one of these
objects is a Forklift object. This is a representation of the

forklift’s current state.
The StepStool engine operates as follows. First, since

the shape is a circle, all gestures that include “shapeof
Circle” (the top four in fig. 11) are evaluated in order
of priority. First, StepStool evaluates the DropOffR gesture.
According to the given statements there must be at least
one pallet and one forklift object in the scene. There are—as
mentioned above, they were just loaded into the scene—so
the process continues. First, “shape on pal” is evaluated.
This evaluates to true, so the next condition, “fork.loaded
is true” is evaluated. This second statement evaluates
to false, because the forklift is not loaded. The StepStool
engine discards this gesture and moves on to the next one:
PickUpR. The StepStool engine goes through the same steps
as with the previous gesture description. This time, the last
condition, “fork.loaded is false” evaluates to true.
All conditions in the PickUpR gesture have evaluated to true,
so the StepStool engine returns it. The engine does not look
at either of the remaining 2 descriptions.

E. An Aside about “Correcting” Shape Classifications

Early versions of the forklift project’s shape classifier often
returned inaccurate shape classifications. If a user’s stroke
was not a perfect circle or overlapped itself to too great a
degree, the shape recognizer would classify the stroke as a
polyline instead of a circle. We found that the inaccuracy
of our primitive shape recognizer was acceptable, because
there were distinctive elements of the scene in our domain,
that distinguished mis-classified polylines (strokes the user
intended to draw as circles) from actual polylines. Thus we
think that it is worth noting that adding context (with StepStool
or otherwise) has the ability to improve stroke-to-gesture
recognition in certain cases.

IV. FUTURE WORK

Development of our StepStool system was directed heavily
by the forklift project (described in [11]). We expect that the
language in its current form will not suffice in implementing
many sketch-based systems. However, we see a lot of potential
in our approach. The following sections list what we consider
promising extensions to StepStool. They have the potential to
make StepStool more broadly applicable.

A. Non-Robotic “Real Worlds”

Fig. 13. The architecture used when implementing a system without the
ability to sense the real world. The world model stores the state of the canvas.
Gestures act directly upon the world model by adding things to the world
model, or editing things in the world model.

We propose making an ASSIST [1] clone that uses drawing
on the world, to test the efficacy and flexibility of using
StepStool on systems with no connection to the real world
(i.e., non-robotic systems). Fig. 13 shows the architecture of
such a system. The “world” that the user is drawing on is
the world of the canvas. When the program starts, the world
model is empty. The user draws an outline that is recognized
as a circle. The circle is interpreted to be a body and added
to the world model. Later, when a circle is drawn around that
body, the system classifies it as a selection gesture.

gesture StartBody gesture AddBody
 shapeof Line shapeof Circle
 referent projected referent projected
 shape not on Body [*] shape not on Body [*]
end end

 gesture AddWheel
 shapeof Circle
 referent projected
 given Body body
 shape on body
 end

gesture ContBody gesture EndBody
 shapeof Circle shapeof Line
 referent bp referent bp
 given BodyPart bp given BodyPart bp
 shape approx on bp shape approx on bp
end end

Fig. 14. Possible gesture descriptions in the ASSIST implementation.

Fig. 14 gives examples of how these gesture descriptions
could look. The StartBody, AddBody, and AddWheel
gestures’ referents are “projected” because their pur-
pose is creating bodies in the world model. In the case of
StartBody, a BodyPart is made, because the shape that
was drawn did not fully close. Later, when a continuing or
completing stroke finishes the body, it can be added to the
world model.

B. Other Input Modes
We would like to extend StepStool to include other input

modalities. For example, we could write a hand gesture
recognizer that compares hand gestures against context to yield
context-rich hand gestures. Examples of this would include
work from [10], in which machine learning approaches are
used to distinguish between a subset of flight deck hand
signals. In this system, we would have to switch our vocabu-
lary from “strokes” to “hand movements” and from “shapes”
to “hand signals”. “Hand gestures” would then be specific
commands. The context of these commands would be the state
of the flight deck.

V. CONCLUSION

In this paper, we presented our approach to implementing
context-rich sketch-based interfaces. Our approach was based

on distilling the details of context into a description language
we call StepStool. We implemented and described a StepStool
engine, that followed StepStool descriptions to make gesture
interpretations. We described how the engine was meant to be
used in an arbitrary system. Finally, we gave an example of
StepStool’s use in the mobile command interface to a robotic
forklift and followed the recognition of a stroke in that system
through a shape into a gesture.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. Army
Logistics Innovation Agency (LIA), the U.S. Army Combined
Arms Support Command (CASCOM), the Agile Robotics
group at CSAIL, MIT, and Randall Davis for his guidance
in this work.

This work was sponsored by the Department of the Air
Force under Air Force Contract FA8721-05-C-0002. Any
opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by
the United States Government.

REFERENCES

[1] Christine Alvarado and Randall Davis. Resolving ambiguities to create
a natural computer-based sketching environment. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence,
pages 1365–1371, Seattle, Washington, USA, August 2001. Morgan
Kaufmann Publishers.

[2] A. Correa, M. R. Walter, L. Fletcher, J. Glass, S. Teller, and R. Davis.
Multimodal interaction with an autonomous forklift. In Proceedings of
the 5th ACM/IEEE International Conference on Human-Robot Interac-
tion, Osaka, Japan, March 2010.

[3] Terrence Fong, Charles Thorpe, and Betty Glass. PdaDriver: A handheld
system for remote driving. In In Proceedings of the IEEE Internationall
Conference on Advanced Robotics, July 2003.

[4] Tracy Hammond and Randall Davis. Ladder, a sketching language for
user interface developers. Elsevier, Computers and Graphics, 28:518–
532, 2005.

[5] T. Y. Ouyang and R. Davis. Chemink: A natural real-time recognition
system for chemical drawings. In International Conference on Intelligent
User Interfaces (IUI ’11), February 2011.

[6] B. Paulson and T. Hammond. Paleosketch: Accurate primitive sketch
recognition and beautification. In Intelligent User Interface Conference
(IUI ’08), January 2010.

[7] D. Sakamoto, K. Honda, M. Inami, and T. Igarashi. Sketch and
run: A stroke-based interface for home robots. In Proceedings of
the International Conference on Human Factors in Computing Systems
(CHI), pages 197–200, Boston, MA, April 2009.

[8] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch
based interfaces: Early processing for sketch understanding. In Workshop
on Perceptive User Interfaces, Orlando FL, pages 1–8, 2001.

[9] M. Skubic, D. Anderson, S. Blisard, D. Perzanowski, and A. Schultz.
Using a hand-drawn sketch to control a team of robots. Autonomous
Robots, 22(4):399–410, May 2007.

[10] Yale Song, David Demirdjian, and Randall Davis. Continuous body and
hand gesture recognition for natural human-computer interaction. In
ACM Transactions on Interactive Intelligent Systems (TiiS), 2011.

[11] S. Teller et al. A voice-commandable robotic forklift working alongside
humans in minimally-prepared outdoor environments. In Proc. IEEE
Int’l Conf. on Robotics and Automation (ICRA), May 2010.

[12] Bo Yu and Shijie Cai. A domain-independent system for sketch
recognition. In GRAPHITE ’03: Proceedings of the 1st International
Conference on computer Graphics and Interactive Techniques, pages
141–146, February 2003.

	I Introduction
	I-A Related Work

	II Terminology
	II-A Strokes, Shapes, and Gestures
	II-B Domain Knowledge vs. World Context
	II-C The World, the World Model, and the Scene
	II-D Grounding Gestures to Referents

	III StepStool
	III-A Use in a General System
	III-B Syntax & Details
	III-C Implementation: The Forklift Project
	III-D Forklift Project Run-Through
	III-E An Aside about ``Correcting'' Shape Classifications

	IV Future Work
	IV-A Non-Robotic ``Real Worlds''
	IV-B Other Input Modes

	V Conclusion
	References

